Russian Journal of Organic Chemistry, Vol. 37, No. 7, 2001, pp. 1056–1057. Translated from Zhurnal Organicheskoi Khimii, Vol. 37, No. 7, 2001, p. 1102.

Original Russian Text Copyright © 2001 by Britsun, Pirozhenko, Lozinskii.

SHORT COMMUNICATIONS

New Synthesis of 5-Aryl-5,6-dihydro-7H-[1,2,4]triazolo-[5,1-*b*][1,3]thiazin-7-ones

V. N. Britsun, V. V. Pirozhenko, and M. O. Lozinskii

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 253660 Ukraine

Received October 21, 1999

The acylation of 4,5-dihydro-1,2,4-triazole-5thiones with carboxylic acid chlorides is known to occur at the nitrogen atom in position 1 of the heteroring [1, 2], while compounds having an activated double bond readily add at the 5-thioxo group at 20°C [3]. Taking these data into account, we proposed a new procedure for synthesizing poorly studied 5-aryl-5,6-dihydro-7*H*-[1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-ones by condensation of triazolethione I with substituted cinnamoyl chlorides IIa-IIc (Scheme 1).

The heterocyclization occurs under mild conditions, on heating the reactants in a benzene-pyridine mixture for 1 h under reflux. Products III were formed in good yields, and no by-products were detected.

The structure of compounds **III** was established on the basis on the ¹H NMR spectra. The double bond of initial cinnamoyl chloride II (two doublets at δ 6.80 and 7.50 ppm) is transformed into a single bond $(\delta 3.30-5.50 \text{ ppm})$ which gives rise to an ABX system. The composition of products III was confirmed by the data of mass spectrometry and elemental analysis.

5-Phenyl-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b]-[1,3]thiazin-7-one (IIIa). A solution of 1.66 g (10 mmol) of cinnamoyl chloride (IIa) in 4 ml of benzene was added at 20°C to a solution of 1.01 g (10 mmol) of 4,5-dihydro-1,2,4-triazole-5-thione (I) in

4 ml of pyridine. The mixture was refluxed for 1 h, cooled, and diluted with 50 ml of water. The precipitate was filtered off and dried. Yield 1.62 g (70%), mp 163°C. ¹H NMR spectrum (acetone- d_6), δ , ppm: 3.47 m (1H, 6-H), 3.88 m (1H, 6-H), 5.40 m (1H, 5-H), 7.46–7.58 m (5H, H_{arom}), 8.10 s (1H, 2-H). Mass spectrum, m/z (I_{rel} , %): M^{++} 231 (27). Found, %: C 56.66; H 3.95; N 18.20. C₁₁H₉N₃OS. Calculated, %: C 57.14; H 3.89; N 18.18.

Compounds IIIb and IIIc were synthesized in a similar way.

5-(4-Methoxyphenyl)-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one (IIIb). Yield 72%, mp 143°C. ¹H NMR spectrum (acetone- d_6), δ , ppm: 3.41 m (1H, 6-H), 3.78 m (1H, 6-H), 3.83 s (3H, CH₃O), 5.36 m (1H, 5-H), 7.00 d (2H, H_{arom}), 7.53 d (2H, H_{arom}), 8.06 s (1H, 2-H). Mass spectrum, m/z ($I_{\rm rel}$, %): M^{+} 261 (41). Found, %: C 55.12; H 4.10; N 16.12. C₁₂H₁₁N₃O₂S. Calculated, %: C 55.17; H 4.21; N 16.09.

5-(3-Nitrophenyl)-5,6-dihydro-7*H*-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one (IIIc). Yield 81%, mp 202°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.41 m (1H, 6-H), 3.99 m (1H, 6-H), 5.60 m (1H, 5-H), 7.76 d.d (1H, H_{arom} , J = 8.3, J' = 8.3 Hz), 7.95 d (1H, H_{arom} , J = 8.3 Hz), 8.25 d (1H, H_{arom} ,

Scheme 1.

Ar = Ph (a), 4-MeOC₆H₄ (b), $3-O_2NC_6H_4$ (c).

1070-4280/01/3707-1056 \$25.00 © 2001 MAIK "Nauka/Interperiodica"

J = 8.3 Hz), 8.30 s (1H, 2-H), 8.35 s (1H, H_{arom}). Mass spectrum, m/z (I_{rel} , %): $M^{+\cdot}$ 276 (52). Found, %: C 47.85; H 2.90; N 20.60. C₁₁H₈N₄O₃S. Calculated, %: C 47.83; H 2.90; N 20.29.

The ¹H NMR spectra were recorded on a Varian 300 instrument (300 MHz) using tetramethylsilane as internal reference. The mass spectra were obtained on an MKh-1303 spectrometer.

REFERENCES

- 1. Tsitsika, M.M., Khripak, S.M., and Smolanka, I.V., *Khim. Geterotsikl. Soedin.*, 1974, no. 6, pp. 851–853.
- 2. Heindel, N.D. and Reid, J.R., J. Org. Chem., 1980, vol. 45, no. 12, pp. 2479–2482.
- 3. FRG Patent no. 2016083, 1970; *Chem. Abstr.*, 1971, vol. 75, p. 56785a.